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_§§ Abstract I:‘ -

Stable autoregressive (AR) and autoregressive moving average (ARMA)

processes belong to the class of stationary linear time series. A linear

- .
time series Gx&:)--w{s;;_—h(t-s)c(s}i is Gaussian if the distribution of the
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independent innovations {egf)} is normal. Assuming that Ee(t) = O, some of
the third order cumulants Cxxx(@on) = Ex(:)x(t+u)x(c+u) will be non-zer  1if
the €(t) are not normal and E§3(t)~; 0. ‘If the relationship between {x(t)} : !
and {e(t)} is non=linear, then {x(t)} is non~-Gaussian even if the e(t) are
normal. This paper presents a simple estimator of the bispectrum, the
Fourier transform °€ojfxxx(m’n)}‘ This sample bispectrum is used to
construct a statistic to test whether the bispectrum of {x(t)} is non-zero.
A rejection of the null hypothesis implies a rejection of the hypothesis
that {x(t)} is Gaussian. A related test statistic is then presented for i
testing the hypothesis that {x(t)} is linear. The asymptotic properties of :
the sample bispectrum are 1ncorp?rated in these tegst statistics. The tests

N e
are consistent as cﬁe sample size N+w. = j
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Testing for Gaussianity and Linearity of a
Stationary Time Series

Melvin J. Hinich
Virginia Tech
1. Introduction

Time series data from a variety of sources are often analyzed under
the explicit or implicit assumption that they are generated by
autoregressive (AR) or autoregressive moving average (ARMA) processes,
These processes are finite parameter linear stationary stochastic
processes. The t'P element of a causal linear processes {x(t)} is of the
form

-

x(t) = ] h(s)e(t=-s), (1.1)

s=0
where the e€(t) are independent identically distributed random {nnovations
with Ec(t) = 0. In filter theory terminology, the stationary process
{e(t)} 1is the input to a time invariant linear filter whose impulse
response is {h(t): t = 0, 1,...}. If 2:.0h2(t) < =, the covariance
function of the stationary output process {x(t)} is finite. If the input
is Gaussian, then the output is Gaussian and its covariance function
completely determines the joint distributions of the process.

But suppose that the ¢(t) are not normal and uy = E53(:) ¢ 0. Then
the third order cumulant cy.(m,n) = Ex(t)x(t+m)x(t+n) # O for many
values of m and n. The same is true if {x(t)} is generated by a
nonlinear filtering operation satisfies a Volterra functional expansion

(Brillinger, Sec. 2.10, 1975). Noalinear models are beginning to play a
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role in applied time series. An overview of nonlinear models is given by
Priestley (1980).

Using an estimator of the bispectrum of {x(t)} Subba Rao and Gabr
(1980) present tests for whether the process is Gaussian and whether it
is linear. They do oot use the asymptotic variance of the sample
bispectrum in their multivariate procedures, which is reasonable for
smallish sample sizes. This paper presents a modification of their
approach that makes heavy use of the large sample properties of the
sample bispectrum. Let us begin with a brief review of the bispectrum of

a stationary zero-mean process.

2. The Bispectrum

The bispectrum B(ml.mz) gives a measure of the multiplicative
nonlinear interaction of frequency components in {x(t)} (Hasselman et
al., 1963)., For a real stationary time series with Ex(t) = 0, the
bispectrum is defined as follows:

= »
Bx(“l’“Z) - E 2 cxxx(m,n)exp[-i(ulm + mzn)l, (2.1)
mw—ee p=-—
assuming that |cyy,(m,n)| is summable. Given the symmetries of
Bx(wl,uz), its principle domain is the triangular set @ = {0 < wy <,
wy € wy, Zul +wy < 2n} (Van Ness 1966). The area of this triangle is
2/3 of the area of the triangle {0 < w) € 7, wy < wj}.

If {x(t)} 1is linear, then

Bx(wpwz) = H3H(W1)H(U2)H*(Wl"‘w2) (2.2)

!
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where H(w) = Z:_oh(c)exp(-iwc) is the filter transfer function and the
star denotes complex conjugate (Brillinger, 1965). Thus if u3'E€3(:)$0,
then By(w),w;) % 0.

The finite Fourier transform of a sample {x(0), x(1),¢e., x(N=1)} of

the process can be used to comstruct a consistent estimator of the

bispeccrum.l let wy = 2rn/N for n = 0, l,..., N~1. Por each pair of

integers j and k, define

F(3,k) = N 1X(0g )X ) X (wg4) » (2.3)
where
N-1
X(wg) = ) x(t)exp(~iu,t).
t=0

Since X(wj4y) = X(wy) and X(wy_y) = x*(wj), the principal domain of
F(j,k) 1s the triangular grid D= {0 < j < N/2, 0 < k< j, 2j + k < N}
(let N be even).

Set X(0) = 0, which is equivalent to subtracting the sample mean
from the data., Thus F{j,0) = F(O,k) = O, Given a summability condition
for the cumulants of {x(t)}, it follows from expression (4.3.15) in

Brillinger (1975) that

E[F(J,k)] = By(wy, wp) + O(NLy, (2.4)

and the complex variance is

13ubba Rao-Gabr use the standard windowed sample covariance method.
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E|F(I,k) = By(ugs wp)|2 = Nsg(wy)Sglup)Selugyy) (2.5)
[1 + 8(J-k) + §(N=23-k) + 46(N=3§)8(N-3k)] + o(l),

vhere Sy(w) is the spectrum of {x(t)} and §(k) = O unless k = O when
§(0) = 1. The complex covariance between F(j,k) and F(j',k') is O(N'z)
for j # J' or k # k' (it is O(N"!) for the "exclusive or" cases).

There are many ways to average the F(j,k) to obtain a consistent
estimate of the bispectrum on a lattice of points in the set D. For the
lattice L = {(2m-1)M/2,(2n-1)4/2:m,n = 1,2, ... and M = N® for 1/2 < ¢ <
1} in D, a simple approach is to average the F(j,k) in a square of u2

points centered at ((2m-1)M/2, (2n-1)M/2) if all the (j,k) are in the

domain (Fig, 1). The estimator is then

mM-1 aM=-1

Be(m,n) = ¥M2 ¥ I R(3,k) (2.6)
j=(m=1)M k=(n-1)M

If a square has points outside the set D, those points are not included

in the average.
If By (ul,mz) is slowly varying over a square of width 2xM/N and

Sx(w) 1s slowly varying over a 2rM/N band, it follows from (2.4) that

E[;x(m,n)] = B (2x(2m~-1)M/2N, 2n(2n-1)M/2N) + O(M/N). (2.7)

From (2.5), the complex variance is
Varlx(l-n) - EIBx(m.n)Iz - |nx(m,n)|2

« MM"4q( 5, (2% (2m=1)M/2N) (2.8)

sx(Zt(Zn-l)H/ZN)Sx(Zu(m+n-1)M/N) + 0(M/N) ]




where Q i{s the number of (j,k) in the square that are in D but not on the

E boundaries j =k or 2j+k = N, plus twice the number on these boundaries.
If the squars is within D, Q = M2, For any square, Q > u2/8

since the smallest set in the domain (a triangle} is for the square

centered at (0,0). Since M = N® for 1/2<e<l, M/N+0 and
NM'AQ ¢ W2 = N172%,0 45 New. This implies that B is a corsistent
estimator of the bispectrum at (“1’“2) as N+» for the sequence {m(N) =
[mlNl'cl, n(N) = [mle-cl}, where [x] denotes the integer part of x.
The asymptotic distribution of each estimator is complex normal
since the estimator is asymptotically equal to the one analyzed by Van
Ness. Applying Theorem 4.4.2 in Brillinger (1975), the estimators are
asymptotically independent. Thus from (2.8), the distribution

of

Xp,n = (N174eQ)=1/2(g, (2n (2u=1)M/2N)S, (2n (2n-1)M/2N) f
sx(2w(m+n—1)M/N)]'l/zgx(m,n) (2.9)

is complex normal with unit variance. Consequently, 2|Xm’n|2 is

approximately chi-square with two degrees of freedom and noncentrality {

parameter !

Ag,n = 2NI=éeqy=ly (a,n) > 2¥2¢=ly (m,n) (2.10) ;

where

;
27 ( 2m= 20-1)4 '
) By 7 (2m I)M.Zw( a-1) )2, E

! Y (m,n) = s-l(Zw(Zm-l)H 51 Zw(Zn-l)H)s_l(Zw(m+n-1)u

x 2N x 2N x N 2N 2N
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!
Moreover, the statistic § = 22 IXm nlz is approximately x2 () where
(m,n)el 2P
A=y Ap,n and P 1s the number of (m,n) in L. Since n = 1,...,[N/2M],

(m,n)el
P i3 approximately NZ/IZMZ.

3. Testing for Gaussianity

The statistic S is basically the Subba Rao—Gabr test statistic with
the asymptotic variance-—covariance matrix instead of their sample

estimate. Under the null hypothesis, 3(“1’“2) £ 0, and thus S is

g approximately ng(O) for large N. This suggests the following test ;j

statistic: S = ZZm,nlxm,nlz where Xy n is given by (2.9) with Sx(w) replaced

by an estimate sx(m) for each lattice frequency in the domain. If the
spectrum is estimated by averaging M adjacent periodogram ordinates
(Puller, Sec. 7.2, 1976), then ;x(”) = S (w)[1 + (M/N)Y] where Y is
(approximately) a standard normal variate., It then follows from (2.9) that
; =5 + op(M/N), and thus the distribution of ; is also approximately
x:P(X) for large N, An approximate a:level test of the null hypothesis
that B(“l’“2) £ 0 1s to reject it if S > £ where g = Pr(xgP > ca).

If the null hypothesis is rejected, then the Gaussian assumption
must be rejected. If not, then the process may be non-Gaussian but the
data is consistent with a zero bispectrum.

I will now show that the test is consistent as N»«, For simplicity,

suppose that all the squares are in D so that Q = M2, Set

a = (2“)-2ffn[sx(“l)sx(“z)sx(”L*”z)]-1 |BeCwyswg) | 2duy,dwgy, (341)

where Q is the principsal domain. From (2.10),




L] ag,n = A%l 4 oeh (3.2)
(m,n)el

using the integral approximation of a sum.
This approximation of A/P will now be used to obtain the large sample

property of the power of the chi-square test. For large N and thus large P, {

2
(2?)'lxzp(l) is approximately normal with mean 1+(2P)~l) and variance

(ZP)-Z(AP+4A). Thus the large sample power of the test is a monotonically '
increasing function of the “signal-to-noise” ratio
P+2/2

| (/2 [2(x/4p)]11/2

2 (aN/ZA)l/Z (3.3)

since P =« N2(1’°)/1z. Thus the test is consistent. Moreover, the null
hypothesis will be correctly rejected with probability near one if
(aN/Zﬁ))'/2 >4, If a = 1, for example, then a sample size of N > 384 is

needed to achieve this somewhat conservative bound for high power. &

4. Testing for Linearity

If {x(t)} is a linear process, then Sy(w) = |H(w)|202 where

€
0l - Ecz(:). Thus from (2.2),
€
-6
Yx(m,n) = O¢ ug (4.1)

for all (m,n)el. From (2.10),
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x=pl | ([%gal?-D (4.2)
(m,n)el

is a consistent estimator of NZc-le under the null hypothesis that {x(t)}

is linear. It then follows from the results in Section 2 that

savt2 7 (Imal?-1-0 (4.3)
(m,n)el

is approximately normal N(O,yx/G) under the null hypothesis. This statistic
wich Sy instead of Sx can be used to test for linearity. The coasistency
of this tesc follows from the large sample analysis used to show the

congistency of the S test.

5. Conclusion

Simple tests for Gaussianity and linearity of a time series have been
presented. The large sample variance and covariance of the asymptotically
normel bispectrum estimstor are used to simplify the Subba Rao-Gabr test
statisctics. The asymptotic properties of the statistic for testing for a

zero bispectrum have been presented. The power of this test is high when

aN is large.
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The Lattice in the Principal Domain
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